From the good people who brought you Risk and Simon comes everything you ever wanted to know about...

TI-89 and TI-92 BASIC: The Complete Guide

Table of Contents

I. Introduction

	A. A word from the author

	B. Conventions in this document

	C. What is TI-BASIC?

	D. Important definitions

II. The Basics of BASIC

	A. Programs and Functions

	B. Variables

	C. Giving the user information

	D. Getting information from the user

	E. Conditional statements

	F. Branching

	G. Loops

III. Variables

	A. Expressions

		1. Real

		2. Complex

		3. Referencing other variables

			a. Circular definition

	B. Equations

	C. Lists

	D. Matrices

	E. Data

	F. Strings

	G. Pictures

	H. variable management

IV. Output

	A. The IO screen

	B. The graph screen

		1. Text

		2. Points, lines, and curves

		3. Pictures

	C. Dialogs

V. Input

	A. The IO screen

	B. The graph screen

	C. Dialogs and Popups

	D. Toolbars

	E. GETKEY function

VI. Conditional statements

	A. Booleans

	B. IF statements

	C. TRY statements

VII. Branching

	A. LBL and GOTO

	B. Calling other programs

VIII. Loops

	A. LOOP command

	B. FOR loop

IX. Miscellaneous

	A. Linking

	B. # (Indirection) and EXPR

	C. Modes

	D The GET functions

	E The EXEC command

	F. Other commands

X. Sample routines

	A. Moving text

	B. Graphics

	C. Input

	D. Linking

	E. Lists, Matrices, and Data Sets

	F. Gaming Graphics

	G. Problems

I. Introduction

A. A word from the author

	My name is Grant Elliott. I've been programming in BASIC for three years, but I have finally gotten around to learning assembly. I own a TI-85 and TI-89 and I use a TI-83 in Statistics class. I have also started an alliance known as Programmers Anonymous. Check out our webpage at www.crosswinds.net/~proganon (soon to be pa.ticalc.org with any luck). Remember to check out our Archive and PUD sections.

	This set of lessons is set up to accommodate people with or without experience in programming (in any language). The Section II is set up mainly for those who are completely new to BASIC. This is simply a general overview of the features with which you will be working. In time, we will dive into detailed examinations of these features. Those of you who have programmed in BASIC before can feel free to skip this section.

	In this course, you will learn not only how to program in BASIC, but also some of the tricks we in Programmers Anonymous have picked up over the past few years. The best way to learn BASIC is to read source, and you will read plenty. You will also meet some of the obscure, rarely used, features of BASIC that can save you both time and effort. Good luck.

B. Conventions in this document

	This document was written to be viewed with portrait settings. If you are in landscape, please switch.

	For symbols not available in most fonts, I will use similar symbols. These include:

The store command (arrow), for which I will write -->

Theta, which I will spell out

Not equal, for which I will write <>

The conversion symbol, for which I will write >

	I will write functions in CAPS. You need not enter them in your calculator like this (but if you do, the calculator will fix it in the next compile).

	Tips and important information will appear in bold.

	Arguments will be written in italics.

C. What is TI-BASIC?

	TI-BASIC is Texas Instruments' way of allowing the user to customize what his or her calculator can do. It is not to be confused with computer forms of BASIC, because they are not as similar as you might think. Think of TI-BASIC as a better form of PASCAL (a much, much better form). Texas Instruments claims that BASIC (when I am referring to computer BASIC, I will specify) is not meant for games, but if that were true, we wouldn't have most of the functions they have given us. TI-BASIC is fairly easy to learn, but takes time to master. Hopefully, this tutorial will get you on your way.

D. Important definitions

Argument - a value or variable given to a function which controls the way the function behaves ex. abs(expr)

Parsing - used to describe both dividing and combining of lists, matrices, strings, etc.

Sprite - picture (usually smaller than full screen)

Syntax - the correct usage, including arguments, of a command

II. The Basics of BASIC

	This section provides basic information for programmers new to TI-BASIC and non-programmers. If you have used TI-BASIC before, you can skip over most of this material.

A. Programs and Functions

	If you are new to the 89 and 92, but have programmed TI-BASIC before, the first thing you are likely to notice is the addition of functions. You are probably wondering by now what the differences between programs and functions are. Well here it is... nothing. Okay, so there are a few differences. Functions can return values on the home screen, but cannot write to folder variables. That's all that really matters. For now, don't worry about it. We will deal mainly with programs in these lessons. All you need to know is that programs and functions execute a series of commands just as if you had typed them one by one into the home screen.

B. Variables

	There are three general types of variables: folder, local, and system. Each of these has a different scope.

	

	Folder variables can be recalled from anywhere, but most easily from the folder they are in. To recall a variable while in it's folder, simply type the name of the variable. If you are not in the same folder as the variable, you must type the directory, followed by a backslash (2nd then 2), then the variable name (ex. Main\A would recall the variable named A in the directory Main). You can have more than one variable of the same name as long as they are in different folders.

	Local variables exist only in the program (or function) in which they were initialized. (An important exception to this is passing the value of a local variable to another program, but we'll get to that later.) Local variables must be initialized in the start of a program or function:

Demo()

Prgm

Local a,b,c

...

...

...

Endprgm

	System variables cannot be found in the var-link menu. They are important values used by the calculator in certain applications. Most are generally useless. You cannot delete most system variables (there are a few exceptions, and these variables will appear in var-link). A complete list can be found on page 537 of your manual. The most commonly used are the graph functions (ex. y1(x)), the graph window variables (ex. xmin), and OK (used with dialogs). Other than these, don't worry about system vars. They will do their job and stay out of your way.

	There are a number of different kinds of variables which will be explained in detail in section III. These include expr, list, mat, data, equ, and pic.

C. Giving the user information

	The return of information to the user is known as output. Output in TI-BASIC includes the IO screen, the graph screen, and dialog boxes.

	Writing to the IO screen is by far the easiest. Either use DISP [expr or string],[expr or string],... or use OUTPUT row, column, expr or string. DISP will display the expression or string on the IO screen and scroll old information if necessary. DISP with more than one argument is the same as using DISP on each individually. TIP: Use DISP with multiple arguments instead of multiple times. Output writes the expression of string on the IO screen at the specified coordinates (in pixels). To clear the IO screen use CLRIO.

	Writing to the graph screen is somewhat more complicated. You can use PXLTEXT string, row, col or PTTEXT string, x,y. TIP: Use PXLTEXT instead of PTTEXT to avoid having to set the window. To clear the graph screen use CLRDRAW (CLRGRAPH clears functions that have been graphed, FNOFF 1,2,... disables a function from graphing).

	Dialog boxes have a more complicated format. I will explain this is more detail in sections III and IV.

D. Getting information from the user

	The reception of information from the user is known as input. Input in TI-BASIC includes prompts, input, dialogs, toolbars, and key presses.

	To receive information in the IO screen, use PROMPT var1,var2,... This will display the name of the variable followed by a question mark. The expression typed by the user will be stored in this variable. INPUT [string], var is the same as prompt except it displays the string instead of the variable name. If the string is omitted, a question mark is displayed. IMPORTANT: PROMPT and INPUT treat what they receive as expressions. Use Imputstr [string], var to receive a string.

	You can receive graph coordinates by using INPUT with no arguments.

	More information on dialogs, toolbars, and key presses can be found in section V.

E. Conditional Statements

	We will discuss conditional statements in depth in section VI. For now, simply know that you use a conditional statement to compare values and behave appropriately.

F. Branching

	A program branches after a conditional statement. This simply means that it behaves in a different manner depending on the result of a comparison. We will discuss branching in section VII.

G. Loops

	Loops are among the programmers most useful tools. There are two kinds of loops that we will deal with. LOOP ... ENDLOOP will execute what is the middle indefinitely until a branch sends it out of the loop.

A FOR loop is similar to LOOP except it only executes a set number of times. FOR loops can also be left early if a branch sends the execution elsewhere.

	This concludes our discussion of the basics. If you don't understand this, you won't understand what follows, so read it again. If you do understand this, you're ready to move on to our first in-depth discussion: Variables.

II. Variables

	Variables are at the heart of out little endeavor. If you don't understand variables, you won't be able to do anything, so read this section slowly. There are several important types of variables which we will discuss.

A. Expressions

	The most common of these variables is the expression. Usually an expression will be a real, like 5 or 3.14, but it can also be complex, like 5 + 2i. Expressions can also call other variables (ex. 5 + x). When an expression is used like this, it's value will be simplified if the variables are defined. IMPORTANT: If a variable calls another variable, which is defined, and this variable is used in defining another variable, the new variable will not contain the defined var. That doesn't make much sense, so try this.: Suppose A=1+x and x=7. If we recall A, it will be 8. If be define B as A+1, B will be 8, but B will not change if x changes. A will. Go back and read that again. Similarly, if x is already defined when we store x+1 as A, A will be constant. To avoid this, you could define A as a function, but don't worry about that. To define an expression type expr-->var. Important: If x is not defined and you type x+1-->x, you will receive a circular definition error. If x is defined, this will simply increase x by 1.

B. Equations

	You probably won't store equations as variables unless you are writing a math program. Define an equation variable by typing equ-->var (ex. 5+x=y-->E). Again, once some of the variables in the equation are defined (x or y in the above example), the equation will be simplified, but will change again if the variable values change. If the calculator can prove the equation true or false, it will output true or false. (This can be used with conditional statements.)

C. Lists

	A list is a set of expressions (and sometimes strings). Define a list by typing {expr or string, expr or string,...}-->var. You can recall one element of the list by typing var[elementnumber]. This value can be treated like any other variable of its type. Use dim(var) to get the number of elements in the list.

D. Matrices

	A matrix is similar to a list in two dimensions. Define a matrix by typing [[expr or string, expr or string,...][expr or string, expr or string,...]...]. You can recall a row of a matrix by typing var[rownumber]. You can recall any element by typing var[rownumber,colnumber]. Dim(var) will return a list {number of rows, number of col}.

	You can convert between lists and matrices using list>mat or mat>list.

E. Data

	

	Data Sets are sets of lists. They are most easily created using the data editor, but you can use NEWDATA list,list,... To recall the list in a column, type var[col]. To recall an element of one of the lists, type var[col][elementnumber]. If you don't understand data sets, don't worry.

F. Strings

	To define a string, type "string"-->var. To recall a portion of a string use LEFT(var,numberofcharacters), RIGHT(var,numberofcharacters), or MID(var,startingpoint,numberofcharacters). To parse two strings together, use string&string. To convert an expression into a string, use STRING(expr). To convert a string to an expression, use EXPR(string). DIM(string) returns the number of characters in the string. To recall the variable with the name which is stored in a string, use #(string). This is important, but confusing, so I'll elaborate on that later.

G. Pictures

	To define a picture, use STOPIC(var,row,col,width,height) or NEWPIC(mat). I will say very little about NEWPIC because it is slow and pretty useless. I have no idea why TI implemented it the way they did. Oh, well.

To recall a picture, use RCLPIC var,row,col, RPLCPIC var,row,col ANDPIC var,row,col, or XORPIC var,row,col. You will usually use RCLPIC, which turns on pixels which are black in the picture file, and RPLCPIC, which also turns off pixels which are already on.

H. Variable management

	You can use ARCHIVE var,var,... and LOCK var,var,... to archive or lock variables. (WOW!) IMPORTANT: ARCHIVED and LOCKED variables cannot be changed. UNARCHIV and UNLOCK undo these processes. Use DELVAR var to delete a variable. Use MOVEVAR var,oldfolder,newfolder to move variables. Use NEWFOLD fold to create a new folder. Try to use local variables whenever possible.

	

	You don't need to understand everything I just said right now. Most of the complicated features, I'll get back to. You do need to understand the differences between the types of var and the associated functions. If you can answer these questions, you're in good shape.

Quiz 1: Variables

What will be displayed when the following code is executed?

1.

Demo1()

Prgm

{1,3,3,7,5,3,7,4,0}-->A

A[4]-->B

B+x-->F

Disp F

EndPrgm

Answer: 4+x

2.

Demo2()

Prgm

[[1,2,3][3,2,1][4,2,6]]-->A

dim(A)-->F

Disp F

EndPrgm

Answer: {3,3}

3.

Demo3()

Prgm

5=3+y-->F

4-->y,

Disp F

EndPrgm

Answer: false

4.

Demo4()

Prgm

Prompt A

"You entered "&string(A)-->F

Disp F

EndPrgm

Answer: ex. You entered 5 (if the user entered 5)

	Good. By the way, none of the above examples is anywhere near as efficient as it could be. Now that you understand variables, we can move on to everything you ever wanted to know about output.

IV. Output

	Output is how we get information to the user. We have a nice variety of ways to do this on the TI-89 and TI-92.

A. The IO Screen

	Back in section II, we learned how to display information to the IO screen using DISP and OUTPUT. Now that you know something about variables, you should realize that we can display values stored in strings using these functions. We can also display expressions (in pretty print if it is enabled). If you wish to display a combination of strings and expressions on one line, use concatenation (&) as shown in question 4 above. This is all fairly straightforward.

B. The graph screen

	We have a couple of ways of returning information to the user on the graph screen. We can use PXLTEXT and PTTEXT as described in section II. You can use many of the same shortcuts described above. TIP: Avoid the IO screen when you can. It's kind of boring.

	Graphics are much more fun. We can use PXLLINE rowstart,colstart,rowend,colend,mode or PTLINE xstart,ystart,xend,yend,mode to draw a line. Use PXLCRCL row,col,radius,mode or PTCRCL x,y,radius,mode to draw a circle. PXLHORZ row,mode, PTHORZ y,mode, PXLVERT col,mode, and PTVERT x,mode to draw horizontal and vertical lines. Mode is 1 to turn on the line or circle. Mode is 0 to turn off line or circle. Mode is -1 to invert the line or circle. We can also use PXLON row,col, PXLOFF row,col, PTON x,y, PTOFF x,y, PXLCHG row,col or PTCHG x,y to turn pixels on and off. We can check the condition of pixels using PXLTEST(row,col) or PTTEST(x,y). These return 1 if the pixel is on and 0 if the point is off. TIP: I highly recommend using PXL functions to avoid having to set the window. If you want to graph a function, you can use Graph expr or define y1(x) as the expression and us FNON 1 to turn y1(x) on (It could also be y2(x)). You could do the same with r1(theta) if you were in polar mode or z1(x,y) if you were in 3D mode.

	Unfortunately, generating graphics one pixel or line at a time is not usually useful. It will waste time and space. Instead, we can use picture variables. Use RCLPIC var,row,col to turn on the pixels that are black in the picture variable. RPLCPIC will also turn off pixels which are white. ANDPIC will turn only off pixels which are white in the picture variable. ANDPIC is rarely used. XORPIC will turn off pixels which are already black on the screen and are black in the picture. TIP: XORPIC a solid black picture to invert the section behind it on the graph screen.

C. Dialogs

	Dialog boxes are a much nicer replacement for the IO screen. They have a somewhat more complicated format as well. They are declared with a DIALOG and ended with ENDDLOG. It between, you can have a variety of commands. You can have at most one TITLE string, which must come immediately after the DIALOG statement.

TEXT string displays the string on the next line of the box. REQUEST, DROPDOWN, and OK and used for input and will be explained in section V.

V. Input

	Input is how we get feedback from the user. We have a nice variety of ways to do this on the TI-89 and TI-92 as well.

A. The IO Screen

	As I explained in section II, you can get input on the IO screen using PROMPT, INPUT, and INPUTSTR. Now, that you know something about concatenation (&), you can make these somewhat nicer, but I still don't advise using them.

B. The graph screen

	Use input with no arguments to allow the user to move the cursor. After pressing enter, the coordinates will be stored in the system variables xc and yc, in function mode, or rc and Thetac (that's supposed to be the letter, not the word), in polar mode.

C. Dialogs and Popups

	Dialogs can also be used for input. DROPDOWN string,list of strings,var will bring up a dropdown menu containing all of the elements of the list. The number of the selected item will be stored in the variable. For example, if you execute:

DemoDD()

Prgm

local A

Dialog

Title "Dropdown Demo"

Dropdown "Choose one",{"Hi", "Hola", "Yo"},A

EndDlog

Endprgm

and select "Yo" from the menu, 3 will be stored in A. Notice that A in this program is local, so it no longer exists once DemoDD is done executing.

	REQUEST string,var behaves like INPUTSTR. If you want it to behave like INPUT, simply add EXPR(var) after the dialog. Ex:

DemoR()

prgm

Dialog

Titile "Request Demo"

Request "Enter a number",A

EndDlog

Expr(A)-->A

EndPrgm

If you enter 1, A will be "1", but the EXPR changes it to 1. In other words, A changes from a string to an expression.

	The most useful system variable is OK. A dialog box can be exited by pressing enter or esc. If enter is pressed, all variables in REQUEST and DROPDOWN commands are updated and 1 is stored in OK. If esc is pressed, all variables retain their original values and 0 is stored in OK. Using branching, we can make the program behave differently if the user presses esc.

	TIP: If a variable used in a DROPDOWN or REQUEST is already defined within the range of possible values for that command, the input in initially at the value of the variable. For example, in DemoDD above, if we stored 2 in A before the DIALOG, the DROPDOWN would start on "Hola"

	IMPORTANT: You cannot use any commands other than TITLE, TEXT, DROPDOWN, or REQUEST between DIALOG and ENDDLOG.

	In case you haven't figured it out yet, I love dialog boxes. They are by far the nicest way to share text based information.

	Similar to dialog boxes are popups. POPUP list of strings,var behaves like DROPDOWN outside of a DIALOG statement.

D. Toolbars

	Believe it or not, that little bar at the top of your screen has some uses other than wasting space. (GASP!) I don't personally like toolbars, but in some cases they are useful. TOOLBAR...ENDTBAR contains a series of Title string[,label]:Item string,label:Item string,label:...:Title string[,label]:Item string,label:Item string,label:... This will replace that bar at the top with the strings following the TITLE statements. When one is chosen and a label follows that TITLE, the program branches to that label. If no label is present, the strings following the ITEM statements drop in a vertical list. When one is selected, the program branches to the appropriate label. Ex:

DemoTB()

prgm

Toolbar

Title "Hello"

Item "Hi",HI

Item "Yo",YO

Title "Bye"

Item "Adios",A

Item 'See ya",SY

EndTBar

lbl HI

...

lbl YO

...

lbl A

...

lbl SY

...

Endprgm

Don't worry if you don't know what the LBL means. We'll get to that later.

E. GetKey

	What if we want to know what key the user just pressed. It's not as hard as you might think (or many people make it). GETKEY() returns the number assigned to the key that was just pressed. IMPORTANT: If no key is pressed, GETKEY()=0. Some important keys are the arrows (On the 89, Left=337, Right=340, Up=338, and Down=344) and enter (13 on the 89). If you want a GETKEY number, try this function.

Gkey()

Func

0-->

While a=0

getKey()-->A

EndWhile

A

EndFunc

If you don't know what WHILE does, you won't understand this. Just know that this waits until a key is pressed (when GETKEY()<>0), then returns the value of the GETKEY(). IMPORTANT: 2nd, Shift, Diamond, Alpha, and On have no GETKEY(). However 2nd, Shift, Alpha, and Diamond affect the GETKEY() of the next button pressed (ex. 2nd Enter is different from Enter).

That's about it. If you understood the last two sections, you'll do fine with conditional statements.

Quiz 2: Input and Output

1. Find the error in this code.

Demo1()

prgm

Dialog

Title "Find the bug"

Dropdown "Look",{"very","very","carefully"},A

If A=3

disp "Hi"

Enddlog

Endprgm

Answer: If A=3:Disp "Hi" is invalid in DIALOG statement.

2. What will this code do?

Demo2()

prgm

Dialog

Title "Question 2"

Request "Enter",A

EndDlog

Dialog

Title "Guess What?"

Text A&" is the answer"

Enddlog

Endprgm

Answer: Bring up a second dialog box telling you what you entered in the first box.

3. What will this code do?

Demo3()

prgm

Input

PtOn xc,yc

endprgm

Answer: Allow you to move a cursor, then turn on the point you moved the cursor to.

Excellent. Time to move on to something much more interesting: Conditional statements.

VI. Conditional statements

	Conditional statements are how you make a program behave differently based on comparisons. First of all, know that an equation can return true or false. (ex. 5=5 returns true, 3=5+-3 returns false, sin(x)^2+cos(x)^2=1 returns true even if x is undefined)

A. Booleans

	Booleans are the values true and false. We have a couple of commands to combine these: bool AND bool, bool OR bool, bool XOR bool, and NOT bool. NOT inverts the boolean. The following explains the others:

true and true		true		true or true		true		true xor true		false

true and false	false		true or false		true		true xor false	true

false and true	false		false or true		true		true xor true		true

false and false	false		false or false		false		false xor false	false

B. The IF statement

	Suppose we wanted our program to do different things depending on a boolean. We can use IF bool to compare. If the boolean is true, the IF statement will execute the next line of code. Otherwise, the next line is skipped. Now suppose we wanted it to execute a few lines. Well, we add a THEN statement after the IF and add an ENDIF after the block we want executed. Ex:

DemoIF()

prgm

Dialog

Title "IF Demo"

Dropdown "Take a guess", {"Answer A", "Answer B", "Answer C"},A

Enddlog

If A=2

Then

Dialog

Title "Correct"

Text "Good job"

Enddlog

Endif

Endprgm

Now, what if we wanted it to tell us if our answer was wrong. Well we could put in another IF statement:�

DemoIF()

prgm

Dialog

Title "IF Demo"

Dropdown "Take a guess", {"Answer A", "Answer B", "Answer C"},A

Enddlog

If A=2

Then

Dialog

Title "Correct"

Text "Good job"

Enddlog

Endif

If A<>2

Then

Dialog

Title "Wrong"

Text "Ha ha"

Enddlog

Endif

Endprgm

But that's bulky. Fortunately, there's an easier way. The ELSE statement runs if the boolean after the IF is false:

DemoIF()

prgm

Dialog

Title "IF Demo"

Dropdown "Take a guess", {"Answer A", "Answer B", "Answer C"},A

Enddlog

If A=2

Then

Dialog

Title "Correct"

Text "Good job"

Enddlog

Else

Dialog

Title "Wrong"

Text "Ha ha"

Enddlog

Endif

Endprgm

It's a little shorter, and easier. We can also use WHILE bool to loop until bool is true. See the GETKEY() section for an example. Up to here, everything is similar to other programming languages. TI-BASIC has another nice tid-bit: TRY statements.

C. TRY statements

	Now, in some cases, our user might enter something that's invalid. Now, we could use IF statements to check the validity of what they enter, but that's time consuming. We can use a TRY statement with what we were going to do anyway. Then, if an error occurs, the program will jump to the ELSE of the TRY. Ex:

DemoTry()

prgm

Dialog

Title "Try demo"

Request "Folder Name",F

Enddlog

Try

Setfold(#F)

Else

Dialog

Title "Can't change folders"

Text "That folder doesn't exist"

Enddlog

Endtry

Endprgm

I'll just tell you that setfold(#F) will change the present folder to the folder with the name that is the value of F. You'll find out why in section IX. So this program tries to set the folder to what you enter, but if no such folder exists, it errors and tells you it can't. If this TRY statement weren't being used, the program would error and quit. When the error occurs, the system variable errornum is updated to represent what error just occurred. A chart in the back of your manual shows what each errornum is, so you can customize your error messages using IF statements to check is errornum is equal to whatever type of error you are checking for. This is usually more trouble than it's worth, however. TIP: Use TRY statements when linking between calculators to avoid a program crash if the link comes out.

VII. Branching

	Branches make your program jump. You can use them to make your program go to a section that is used many times, or enter or leave a loop.

A. LBL and GOTO

	Remember the TOOLBAR statement? Those funny little things we wrote after each ITEM. Those are a form of GOTO. We usually spell it out: GOTO label makes the program execution jump to the line which says LBL label. IMPORTANT: Be very careful not to have more than one identical LBL statement, especially in long programs when it can be difficult to remember. Let's try an example with the GETKEY() function:

DemoLG()

prgm

lbl A

getKey()-->K

If K=13

Goto B

Goto A

Lbl B

Endprgm

Let's examine what this does. First, it stores the last button pressed in K. If K=13 (the last key was enter), the program jumps to LBL B at the end of the program. If K wasn't 13, we skip that line and end up at GOTO A. This makes us jump back to the beginning (where LBL A is). In other words, we wait until enter is pressed, then end the program. This is not the best way to write this routine, but it is a simple example of LBL and GOTO.

B. Calling other programs

	Up until now, everything we've done has been within one program. Calling another program is fairly simple. Just type the name of the program and the double parenthesis. What if we want to pass a value to another program? Well, that's a fairly simple process. Just put the value in the parenthesis. Ex:

DemoA()

prgm

local A

Dialog

Title "Program Calling"

Request "String",A

Enddlog

DemoB(A)

Dialog

Title "Done"

Text "Cool, huh?"

Enddlog

Endprgm

DemoB(x)

prgm

local x

Dialog

Title "Hey"

Text "You entered "&x

Enddlog

Endprgm

Notice that the variables are local. So A only exists in DemoA and X only exists in DemoB. DemoB cannot call the value of A, but by sending the value of A to DemoB, it stores it in the local variable X. Note: The variables here don't need to be local, I made them local to show a case where a local variable can be used in another program (actually the variable isn't, its value is copied to a local variable of the second program).

	If you understood conditional statements and branching, you should be fine. The next two sections are pretty easy. Now, just to be sure you're paying attention, another quiz:

Quiz 3: Conditional Statements and Branching

1. What would happen if I typed Hello("Grant") in the home screen?

Hello(V)

Prgm

local v

Dialog

Title "Yo"

Text "Hi "&V

Enddlog

Endprgm

Answer: A dialog box would read "Hi Grant"

2. What does this program do?

DemoF()

Prgm

1-->x

lbl A

If x=42

Goto B

x+1-->x

Goto A

Lbl B

Dialog

Title "Ford Prefect says..."

Text "That's the meaning of life!"

Enddlog

Endprgm

Answer: It will loop 42 times then tell you something that any geek should know.

There are still two important functions we haven't learned yet: LOOP and FOR. But you will soon realize that they are just simple forms of things you have already done.

VIII. Loops

	You already know the WHILE loop. (We discussed it briefly in the section on conditional statements.) Now we'll learn two more useful loops.

A. LOOP command

	A LOOP...ENDLOOP block executes everything in the middle indefinitely. IMPORTANT: Remember to include a way to get out of the loop. LOOP...ENDLOOP is equivalent to LBL A...GOTO A. Some say that LOOP suffers from "program fatigue" more than using labels. The TI-89 and TI-92 suffer from fatigue so little that if there is a difference (and I don't think there is), it is too slight to notice. I use LOOP...ENDLOOP myself. Go try some of our earlier examples with the LOOP command.

B. FOR Loop

	A FOR loop executes the portion between FOR and ENDFOR a set number of times. The syntax is FOR var,low,high,interval. For x,0,10,2...EndFor would execute the block for x=0, x=2, x=4, x=6, x=8, and x=10 in that order. If the interval is not entered, it is automatically one. The interval can be negative. Remember the meaning of life problem on the last quiz? Let's try it with FOR.

DemoF()

Prgm

For x,1,42

Endfor

Dialog

Title "Ford Prefect says..."

Text "That's the meaning of life!"

Enddlog

Endprgm

Considerably shorter. Of, course something could go inside the FOR loop. Here it acts as a stall.

IX. Misc.

A. Linking

	Linking is a fairly simple matter. SENDCALC var,var,... and GETCALC var,var... are used for transmitting from one calculator to another. In the case of sending from a TI-89 to a TI-92 or vice-versa, use SENDCHAT and GETCHAT. The send commands will give up after a short time and error if no calculator is ready to receive, so put it in a TRY block. The get commands will wait indefinitely and can only be stopped by pressing on and breaking the program. IMPORTANT: SEND and GET are for Calculator Based Laboratories. Do not use them to transmit from calculator to calculator.

B. Indirection and Expr

	Use indirection (# string) to get the value of the variable with the name that is the string. TIP: Use Indirection to recall pictures or player data in games. For example, you could store player 1's stats in play1 and player 2's stats in play2. Then if P was the player whose turn it is, you could use #("play"&string(P)) to recall the appropriate stats.

	Expr string executes what is contained in the string. Use it to execute a string you have parsed together.

C. Modes

Use the following to change modes:

Setgraph(mode,setting)

"Coordinates"		"Rect","Polar","Off"

"Graph Order"		"Seq","Simul"

"Grid"			"Off","On"

"Axes"			"Off","On"	(in any mode other than 3D)							"Off","Axes","Box" (in 3D)

"Leading Cursor"		"Off","On"

"Labels"			"Off","On"

"Style"			"Wire Frame","Hidden Surface","Contour Levels","Wire and 				Contour","Implicit Plot"

"Seq Axes"			"Time","Web","U1-vs-U2"

"DE Axes"			"Time","t-vs-y'","y-vs-y'","y1-vs-y2","y1-vs-v2'","y1'-vs-y2"

"Solution Methos"		"RK","Euler"

"Fields"			"SlpFld","DirFld","FldOff"

Setmode(mode,setting)

"Graph"			"Function","Parametric","Polar","Sequence","3D","Diff 					Equations"

"Display Digits"		"Fix 0",..."Fix 12","Float","Float 1",..."Float 12"

"Angle"			"Radians","Degree"

"Exponential Format"	"Normal","Scientific","Engineering"

"Complex Format"		"Real","Rectangular","Polar"

"Vector Format"		"Rectangular","Cylindrical","Spherical"

"Pretty Print"		"Off","On"

"Split Screen"		"Full","Top-Bottom","Left-Right"

"Split 1 App"		"Home","Y= Editor","Window 									Editor","Graph","Table","Data/Matrix Editor",

				"Program Editor","Text Editor","Numeric Solver"

"Split 2 App"		"Home","Y= Editor","Window 									Editor","Graph","Table","Data/Matrix Editor",

				"Program Editor","Text Editor","Numeric Solver"

"Number of Graphs"	"1","2"

"Graph2"			"Function","Parametric","Polar","Sequence","3D","Diff 					Equations"

"Exact/Approx"		"Auto","Exact","Approximate"

"Base"			"Dec","Hex","Bin"

SetTable(mode,settings)

"Graph <-> Table"		"Off","On"

"Independent"		"Auto","Ask"

SetUnits(list)

{"SI"}			SI units

{"ENG/US"}		US units

{"Custom","cat","unit"}	Custom - any set of category and unit as seen in Unit menu (2nd 				then 3)

D. The GET functions

	These functions get information about the current settings

GetConfg()			Element 22 is the amount of free ram, 26 is the amount of free 				archive

Gerfold()			Current Folder

Getmode(mode)		Mode can be "Graph","Display Digits","Angle","Exponential 				Format","Complex Format","Vector Format","Pretty 					Print","Split 	Screen","Split 1 App","Split 2 App","Number of G				raphs","Graph 2","Exact/Approx","Base", or "All"

Gettype(var)		Returns type of var. TIP: Use GETTYPE to check for validity of 				saved games.

Getunits()			Returns current unit settings

E. The Exec command

	EXEC string[,argu][,argu] executes a Motorola 68000 op code (a form of asm). The only ones worth the trouble are power down ("4E444E75000") and reset ("4E424E75000"). An incorrect code, or one that cannot be used under the present circumstances will crash your calculator. If you want some more information, check on TI's web site (www.ti.com) or download Compiler from www.ticalc.org. It's a little buggy, but it compiles asm using the EXEC command.

F. Other commands

Char(expr)			Outputs a one character string that corresponds with the integer 				used as an argument. Think of it as TI's ASCII code. TIP: 				Some GETKEY values correspond with CHAR values. Use 				TRY:CHAR(GETKEY()):ELSE:ENDTRY to get 					appropriate strings. Ex. If Shift 5 was pressed, CHAR					(GETKEY()) would return "M". You must use this in a TRY 				block because not all GETKEY values (such as 0)	have CHAR 				values. See ORD

Define var(arg...)=expr	Defines a variable. Use it to generate functions and programs 				from within a program.

DispG			Displays the graph screen.

DispHome			Displays the home screen. TIP: Put it at the end of your 				programs.

Exit				Exits the current FOR, LOOP, or WHILE block. Important: 				Be careful in nested loops.

Ord(string)			Returns the integer corresponding to the first character in the 				string. See CHAR.

Part(expr[,expr])		Use PART to parse equations. See your manual for more. 				Rarely used, but extremely helpful in complex math programs

PtTest(x,y)			Tests if the pixel corresponding to the point is on (true) or off 				(false)

PxlText(row,col)		Tests if the pixel is on (true) or off (false)

Pause [expr]			Waits until enter is pressed

Rand [int]			Generates a random integer between 0 and the argument or a 				decimal between 0 and 1 is no argument is specified

	Congratulations, you've finished. Following are sample routines for some common tasks. See if you can figure out how they work.

X. Routines

	Now that you know the commands we'll be dealing with, it's time to write some programs. I'll guide you through the first few, but you'll get less and less help as we move forward. IMPORTANT: The sample routines presented here are for the 89. Numbers related to the screen need to be changed to run on a 92. Otherwise, the code is the same.

A. Moving text

	We'll start small. Suppose we had a block of text that we wanted to scroll from right to left across the screen. We could do this in the IO screen, but I'm going to use the graph screen, because you are much more likely to be using it. We'll also use PXLTEXT. You could use PTTEXT, but then you would have to set the window and that's a nuisance. Let's try this:

TextScr()

Prgm

For A,158,0,-1

PxlText "This text is scrolling",30,A

EndFor

Endprgm

Now that has a few obvious flaws. First of all, if there was something on the screen, the axes were on, or something was set to graph, they're in our way. Secondly, after the word scrolling clears the right edge of the screen, it leaves a big black box behind. By the way, if you're using a 92, you won't use 158 in the FOR statement. Instead, use whatever the last column of pixels is. (I don't have a 92, sorry.) Let's fix the problems

TextScr()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

For A,158,0,-1

PxlText "This text is scrolling ",30,A

EndFor

Endprgm

That did it, but our text has to stop at the left edge of the screen. Suppose we want it to keep going off the left side. Try it.

	If you tried making the FOR go into negatives, it didn't work. Why? PXL values cannot be negative. Actually, we can't do this using just what we've learned so far, because using PXLTEXT we can't make it display just the right side of a character with the left side offscreen. We could set up a black box that the characters go into on the left of the screen, but that doesn't look very good. There is a solution: PTTEXT. As you should have noticed by now, there are some commands which we will almost never use except in a few instances. This is one of them. Of course, since we're using PTTEXT, we have to define the window. Here's how you do it.

TextScr()

Prgm

Clrdraw

ZoomDec

FnOff

Setgraph "Axes","Off"

For A,8,-22,-.1

PtText "This text is scrolling ",A,0

EndFor

Endprgm

How cool. There is a much more versatile solution to this problem which also lets us scroll graphics. I will explain this in the graphics section.

	Let's try another problem with the scrolling text. Try to make the text bounce. Go ahead, try it. You probably got something like this.

TextScr()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

Loop

For A,158,0,-1

PxlText "This text is scrolling ",30,A

EndFor

For A,0,158

PxlText "This text is scrolling ",30,A

EndFor

Endloop

Endprgm

That will run indefinitely and we have to stop it with on. See if you can make it stop if you press any key.

TextScr()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

Loop

For A,158,0,-1

PxlText "This text is scrolling ",30,A

If getkey<>0

goto out

EndFor

For A,0,158

PxlText "This text is scrolling ",30,A

if getkey<>0

goto out

EndFor

Endloop

lbl out

Endprgm

We could also set this up similarly with WHILE loops in place of the FOR, but that is more confusing and won't run any faster anyway. But the program doesn't put things back as they should be. Do you remember the syntax?

TextScr()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

Loop

For A,158,0,-1

PxlText "This text is scrolling ",30,A

If getkey<>0

goto out

EndFor

For A,0,158

PxlText "This text is scrolling ",30,A

if getkey<>0

goto out

EndFor

Endloop

lbl out

Clrdraw

Setgraph "Axes","On"�DispHome

FnOn

Endprgm

Just undo what we did in the beginning. Easy. Who wants graphics?

B. Graphics

	Okay, here's a routine that I especially like (so much so that I used as the opening screen to Risk 89). See if you can figure out what it does and how it works.

Graphic()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

RplcPic ts

Loop

For B,1,4

For E,158,1,-1

StoPic d,0,1,E,77

RplcPic d,0,0

RplcPic #({"O1","TS","O2","TS"}[B]),0,E

If Getkey()=264

Goto Out

Endfor

Endfor

Endloop

lbl Out

Clrdraw

Setgraph "Axes","On"�DispHome

FnOn

Endprgm

Where TS, O1, and O2 are full screen pictures. You were right if you said that it scrolled a series of pictures. Risk goes a step further and scrolls text with the pictures, but that gets very confusing, so don't worry about it if you can't figure out how to do that. Let's go through and figure out what each line does.

	The first five lines are the same initialization code we've been using. The next line puts TS on the screen. (This isn't necessary. I just wanted it to start with something on screen.) Now we enter a LOOP and two FOR loops. The first FOR puts the number of the picture that is coming on screen in B. The second FOR puts the pixel column that the picture is at. We then copy everything on the screen up to the incoming picture (with the exception of pixel column 0) into D. When we RPLCPIC D in the column 0, we have effectively slid what remains of the old picture. We then place the incoming picture (using indirection) one column to the left of where it was. Finally we check if esc was pressed and GOTO out if it was. Otherwise we finish off the FOR loops and LOOP. If esc was pressed, we reset the graph screen and go back to the home screen. That wasn't so bad, was it? Make sure you understood this, because it's only going to get worse. See if you can modify this to make the pictures scroll up instead of left. Could this program be used to make pictures scroll down or right? A picture could scroll off screen to the right of down, but a new one could not scroll in from the left or top. For this reason, only use this program to scroll up or left (which are usually more useful anyway).

	Aren't graphics fun? All right, let's try something different. (You never want to see something scroll again do you?) Let's try something easy. I'm just going to give you this one. Because of the way PXLCRCL works, it can be used to create one of the coolest effects in BASIC. Unfortunately, the effect is overused, so don't waste it. See if you can figure out what this does, then run it.

Circ()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

For A,0,100

PxlCrcl 38,79,A

Endfor

For A,100,0,-1

PxlCrcl 38,79,A,0

Endfor

Clrdraw

Setgraph "Axes","On"�DispHome

FnOn

Endprgm

Cool, huh? I've seen it used for everything from magic powers and explosions to a screensaver. Try using it without clearing the screen first and using PXLCRCL 38,79,A,-1 for both of the PXLCRCL's above. Not bad, eh? This will conclude our present discussion on graphics, although I will do some more complicated problems later.

C. Input

	Those of you who programmed on other calculators before are probably thinking, "Wow, I couldn't do some of this stuff on my old calculator." It's faster, too. BASIC doesn't seem all that BASIC anymore, does it? In fact, there are quite a few asm games on other calculators that can actually be ported to BASIC on the 89 or 92. But I don't recommend it because it takes a long time! Complex programs do take a while though, and when you finally finish, you're stuck troubleshooting. So before I get into some more intricate routines, I think now would be a good time to see how you're doing in reading code. In the following routine, I notice that if I leave the request box blank, enter an invalid variable, or press esc, the program errors and quits. Fix it.

Oops()

Prgm

Dialog

Title "You're getting good"

Text "Can you tell me what's wrong?"

Request "Pick a number",A

Enddlog

expr(A)-->A

ClrIO

For B,1,A

Disp A

Endfor

Pause

ClrIO

DispHome

Endprgm

You should have fixed it like this:

Oops()

Prgm

lbl A

Dialog

Title "You're getting good"

Text "Can you tell me what's wrong?"

Request "Pick a number",A

Enddlog

If Ok=0

Goto out

Try

expr(A)-->A

Else

Dialog

Title "Stupid"

Text "You know I can't do that"

Enddlog

goto A

EndTry

ClrIO

For B,1,A

Disp A

Endfor

Pause

ClrIO

lbl Out

DispHome

Endprgm

Of course, it doesn't have to jump to the end because I press esc (OK=0), but it most cases, your user is trying to tell you something. If you understood that, let's try some more input routines. By the way, did you figure out what that last program did? I'm not telling you this time.

	Input seems like a straightforward task, but it can become a nightmare. The programmer has to be prepared for that one idiot who doesn't read the directions, enters the wrong value, and screws up everything. You have to be prepared to make him fix it. (Feel free to insult him, too.) The previous problem is a good example.

	Suppose we prompted the user for a string with six or fewer characters. How do we make sure what he entered was valid? Like this:

Under6()

Prgm

Lbl NP

Dialog

Title "Name"

Request "Your Name",N

Text "Six or fewer letters"

Enddlog

If dim(N)>6

Then

Dialog

Title "PAY ATTENTION"

Text "SIX OR FEWER LETTERS"

Enddlog

Goto NP

EndIf

Endprgm

Remember what DIM does. For a string, it gives us the number of characters. This example is pretty straightforward so I'm not going to explain it any further. I think you get the idea. Let's move on to something more interesting: linking.

D. Linking

	If you plan on writing a multiplayer game, you need to be able to link. Unfortunately, the link cables do not transmit very rapidly (actually it isn't the port's fault, it's the processor's, but that's irrelevant), but they usually work quickly enough. We will use SENDCALC and GETCALC, but if you are communicating between an 89 and 92, you would use SENDCHAT and GETCHAT. First of all, GETCALC will sit and wait...and wait...and wait, until it receives something, so be sure that there will always be something to receive (even if it is just a signal that nothing is happening) whenever the calculator reaches that point. Secondly, SENDCALC will not wait forever, it will error and quit your program. Isn't linking fun? Fortunately there is a solution. Come on, I know you know what it is. The TRY block (wow, that really is useful). I used this routine in Risk instead of SENDCALC.

Linkup(S)

Prgm

Local S

Lbl A

Try

SendCalc S

Else

Dialog

Title "Link Error!"

Text "The link cable is not properly"

Text "inserted. Please fix it"

Enddlog

Goto A

EndTry

EndPrgm

So typing Linkup(A) would attempt to send A, and if the other calculator isn't ready, Linkup gets mad. You can still receive with GetCalc. By the way, just because a value is stored in A on one calculator doesn't mean the other calculator can't receive it as B. If one calculator runs SENDCALC(A) while the other runs GETCALC(B), A on the first will be stored as B in the second, so be careful. That's about all there is to say about linking.�

E. Lists, matrices, and data sets

	I have said very little of lists, matrices, and data sets. This is not to suggest that they are not important. They are one of your greatest tools. Lets try some routines using lists and matrices (data sets are just sets of lists).

	Lets try writing a routine that inputs a list in the form {text, x, y} and writes the test at x,y. I'm using a list instead of multiple inputs for a reason.

Write(L)

Func

local l

Try

PtText L[1],L[2],L[3]

Else

Dialog

Title "Invalid"

Text "Invalid input"

Enddlog

Endtry

EndFunc

That was a useless routine because we could have just used PTTEXT, but it is still useful for learning. L[N] calls the Nth element of L. This is very important. Let's try a variation.

�Write(M)

Func

local l,a

For A,1,dim(m)[1]

Try

PtText M[A,1],M[A,2],M[A,3]

Else

Dialog

Title "Invalid"

Text "Invalid input"

Enddlog

Endtry

EndFor

EndFunc

This inputs a matrix in the form [[text,x,y][text,x,y]...]. Dim(M) returns a list in the form {numberofrows,numberofcols}, so Dim(m)[1] returns the number of rows. M[R,C] returns the element in the Rth row and Cth column, so M[A,1] returns the Ath row and 1st column (one of the texts). If you understood these two simple examples, you're all set with lists and matrices. They aren't complicated, just useful. If you want to parse lists or matrices, you can use the same commands we've been using for strings (i.e.. Left, RIGHT, MID, Augment, etc.). I'm not going to get into the more complicated task of parsing. If you want more information, e-mail me (KeysDezes@aol.com) and I'll help you on a case-by-case basis.

F. Gaming Graphics

	I know this is why you downloaded this file. You want to write games in BASIC. You want to show the world that Mario will run in BASIC. There's a problem there. It can't. No matter how hard you try. But that's okay. Plenty of complex programs can run in BASIC on the 89 and 92. Our website (www.crosswinds.net/~proganon and soon to be pa.ticalc.org I hope) has a couple of interesting examples of gaming on the 89 in BASIC. Two of the more interesting are Dragon Warrior (By Robert Vollrath and Matt Scanlan) and May Day (By Grant Elliott - that's me). Neither is finished, but we can still find some examples of good graphics code. This is from Dragon Warrior:

DragDraw()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"For x,0,14

For y,0,7

RplcPic #("pic"&string(board[1+y,1+x])),12+8*y,39+8*x

EndFor

EndFor

Endprgm

They're using indirection to call pictures (BG1, BG8, etc.) out of a matrix (Board) of numbers (1, 8, etc.). This bring pictures into view one column at a time. Try this one from May Day.

MayDraw()

Prgm

Clrdraw

FnOff

Setgraph "Axes","Off"

For A,1,64

{3,3,4,4,4,3,2,2,2,2,3,4,5,5,5,5,5,4,3,2,1,1,1,1,1,1,2,3,4,5,6,6,6,6,6,6,6,5,4,3,2,1,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,7,7,7,7,7,7,7}[a]-->d

{3,4,4,3,2,2,2,3,4,5,5,5,5,4,3,2,1,1,1,1,1,2,3,4,5,6,6,6,6,6,6,5,4,3,2,1,0,0,0,0,0,0,0,1,2,3,4,5,6,7,7,7,7,7,7,7,7,6,5,4,3,2,1,0}[a]-->e

Try

RplcPic #("P"&mid(map[y+e],x+d,1)),e*8,d*8+46

Else

RplcPic P0,e*8,d*8+46

Endtry

EndFor

Endprgm

I'm not going to get into what line 9 does, because it involves explaining the system I'm using to encode the levels. Just know that this loads a picture (P1, P2, etc.) based on what it reads off a list (Map) of strings. It loads P0 (a black box) if part of our view is off the edge of the map. X and Y are the present coordinates for our field of vision. Now, what's with those lists at the top? Well, they load appropriate coordinates in a spiral shape. This program loads the screen radiating out from the center. In my opinion, this is much more entertaining than watching columns of sprites load. The strings are smaller than the matrices and slightly faster in execution, but also require more code to get the correct information. So, it's a tradeoff. Robert and Matt use matrices so they can rapidly edit their levels.

	Some people talk about grayscale in BASIC. To be honest, it is possible, but not great. You use CYCLEPIC string, numberorpics, wait[, numberofcycles][, direction], but you can't do anything while it's cycling. I prefer writing my own routine:

PicCyc()

Prgm

Loop

Rplcpic Pic1

...

Rplcpic Pic2

Endloop

Endprgm

It works remarkably well. Of course, you could cycle more than two pictures for higher degrees of grayscale, but I don't recommend it. It simply looks bad, especially if there's anything executing between pictures. And, of course, part of the code should include a way to get out of the loop. You could use this to wait for enter (assuming the loop runs quickly, which it should to make convincing gray).

PicCyc()

Prgm

While getkey<>13

Rplcpic Pic1

...

Rplcpic Pic2

Endwhile

Endprgm

Unfortunately, GETKEY is not fast (even when returning 0) and this will slow down the loop, lowering the quality. However, it will work. I used it for the maps in Risk, and they look fairly convincing. Important: the quality of the gray in this program relies heavily on battery level.

G. Problems

	There isn't too much more I can teach you. As with all programming languages, BASIC cannot be entirely taught: it must be learned. I've taught you many tricks that I use on a day-to-day basis. (I cannot stress the importance of indirection enough.) The time has come for you to go off on your own and experiment. It's very difficult to crash your calculator in BASIC (although it can be done), so feel free to try something strange. I recommend backing things up frequently, just in case. I wish you much luck in your future endeavors. If you ever need help, try posting on the TI-BASIC mailing list (TI-BASIC@lists.ticalc.org) or send one of us a question at KeysDezes@aol.com (me), UFGator584@aol.com (Robert), and HSolo2@aol.com (Matt). If it's possible, we'll tell you how. For now, why don't you try writing some of these programs. (* represents a more difficult routine.) Remember, all complex programs are built from simpler code. I bid you farewell, and hope you've had as much fun reading this as I had writing it.

Make a program to check if an expression is an element of a list.

Make a program that moves small sprite around the screen, controlled by the arrow keys.

Make a program to parse an equation without using PART. (Hint: Convert the equation into a string)

Make a program to create another program based on parameters set by the user.* (Hint: You need DEFINE and EXPR)

Make a program to shuffle a deck of cards.

Make a program to play a simple card game.*

Make a program to play a simple bowling game (graphical) with scoring.*

If you can make all of these simpler programs, you won't have any trouble making complex programs (like games). I hope to see your programs on ticalc.org very soon.

	I do ask that you don't steal any of the routines from our programs without giving us credit. A simple, "Thank you Programmers Anonymous for the nice picture scroller," is plenty. Keep in mind that we, like you, are here to get our names out by releasing some of the most complex BASIC programs out there. This guide is provided for your learning use and some of the routines have not even been released yet. Thank you and goodbye.

Grant Elliott

Grant Elliott

Programmers Anonymous

